ar X iv : m at h - ph / 0 10 50 07 v 1 4 M ay 2 00 1 Hypergeometric - like Representation of the Zeta - Function of Riemann ∗

نویسنده

  • Krzysztof Maślanka
چکیده

We present a new expansion of the zeta-function of Riemann. It is given by the formula (1) below. The current formalism – which combines both the idea of interpolation with constraints and the concept of hypergeometric functions – can, in a natural way, be generalised within the theory of the zetafunction of Hawking offering thus a variety of applications in quantum field theory, quantum cosmology and statistical mechanics. Cracow Observatory preprint e-mail:[email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 01 05 14 4 v 1 1 5 M ay 2 00 1 Evaluation of Integrals Representing Correlations in XXX Heisenberg Spin Chain

We study XXX Heisenberg spin 1/2 anti-ferromagnet. We evaluate a probability of formation of a ferromagnetic string in the anti-ferromagnetic ground state in thermodynamics limit. We prove that for short strings the probability can be expressed in terms of Riemann zeta function with odd arguments.

متن کامل

ar X iv : 0 90 3 . 23 83 v 1 [ m at h . N T ] 1 3 M ar 2 00 9 WITTEN MULTIPLE ZETA VALUES ATTACHED TO sl ( 4 )

In this paper we shall prove that every Witten multiple zeta value of weight w > 3 attached to sl(4) at nonnegative integer arguments is a finite Q-linear combination of MZVs of weight w and depth three or less, except for the nine irregular cases where the Riemann zeta value ζ(w − 2) and the double zeta values of weight w − 1 and depth < 3 are also needed.

متن کامل

ar X iv : 0 90 3 . 23 83 v 2 [ m at h . N T ] 1 3 M ar 2 00 9 WITTEN MULTIPLE ZETA VALUES ATTACHED TO sl ( 4 )

In this paper we shall prove that every Witten multiple zeta value of weight w > 3 attached to sl(4) at nonnegative integer arguments is a finite Q-linear combination of MZVs of weight w and depth three or less, except for the nine irregular cases where the Riemann zeta value ζ(w − 2) and the double zeta values of weight w − 1 and depth < 3 are also needed.

متن کامل

ar X iv : m at h - ph / 0 30 50 57 v 1 2 7 M ay 2 00 3 Rhombic embeddings of planar graphs with faces of degree 4 Richard

Given a finite or infinite planar graph all of whose faces have degree 4, we study embeddings in the plane in which all edges have length 1, that is, in which every face is a rhombus. We give a necessary and sufficient condition for the existence of such an embedding, as well as a description of the set of all such embeddings.

متن کامل

ar X iv : m at h - ph / 0 30 50 57 v 1 2 7 M ay 2 00 3 Rhombic embeddings of planar graphs with faces of degree 4

Given a finite or infinite planar graph all of whose faces have degree 4, we study embeddings in the plane in which all edges have length 1, that is, in which every face is a rhombus. We give a necessary and sufficient condition for the existence of such an embedding, as well as a description of the set of all such embeddings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997